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1. Introduction and Background

In many areas, there has been a long-standing need for a multidimensional
goodness-of-fit test that is general, in the sense that the X2 and
Kolmogorov-Smirnov test are general in one dimension, and also, is prac-
tical in a computational sense. Of course, X2 is still available in any
number of dimensions, but its usefulness and practicality are virtually
nil in high-dimensional spaces.

Take X],...,Xn to be n points in m-dimensional Euclidean space

selected independently from a distribution with density f(x). Define the

nearest neighbor distance Rjn from Xj as

R.. = min X=X,

- I 1<igg<n

In what follows we suppress the dependence of Rjn and related quantities
E on n unless confusion is likely.

The distance d(x,y) between points does not have to be Euclidean.

But we assume that it is generated by a norm Ixli, i.e. d(x,y) = lIx-yl.
This paper started with the attempt to derive the limiting distribu-
tion of a goodness of fit test for multidimensional densities based on the
nearest neighbor distances. We established a form of the invariance prin-
ciple. Qur work had two main byproducts: a central limit theorem for

th

sums of functions of nearest neighbor distances and 4~ order moment bounds.

These two pieces were then put together to get the invariance result.

The goodness of fit test:

In looking for a practical goodness-of-fit test applicable to densities
in an arbitrary number of dimensions, our starting point was the observation,

essentially contained in the work by Loftsgaarden and Quesenberry (1965)

- P

R T T T T T T T Y T T T e R L e PP . J



that the variables

an = exp[-n JHX-X-H<R.f(X)d§] , Jj=1l,...,n
J

where f(x) is the underlying density, X],...,Xn are n points sampled inde-
pendently from f(x) and Rj is the distance from Xj to its nearest neighbor,
have a univariate distribution that, in any norm -} distance

a; does not depend on f(x)

b; is approximately uniform.
The reasoning is simple: Tlet S(x,r) be the sphere with center at x and
radius r. For any Borel set A, denote

F(A) = [Afmdy .

Assume X; is the first point selected, then the other n-1. The set {R] 3r1}
is equal to the event that none of the X2,...,Xn fall in the interior of

the sphere of radius " about X1. Hence
- - n-1
P(R].ir]lx1 -x1) = 1 -F(S(x1,r]))] .

Since for fixed x, F(S(x,r)) is monotonically nondecreasing in r, write

the above as
PLF(S(Ry»xp)) 2 F(S(ry,xy ) 14y =xy] = (1= F(S(ry,xy NI

Substituting z = F(S(x1,r])) gives

[l
—
—
]
N
—~—
3
[}
ey

(1.1) PLF(S(%,,Ry)) _>_ziX1 =x]] =

so that

1
—
p—
]
N
~—
S5
1
pa—y

PLF(S(Xy,R))) 22] =

R A
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Since

U] = eXP[‘”F(S(X~| 3R~|))] H

we have that for log x > -n,

P(U, <x) = (1 +1/n 1ogx)n'] ~x , for x fixed.

1

The above suggests that a possible approach to a goodness-of-fit
test would be to take the density g(x) to be tested, compute the

statistics

exp [-n[g(x) dx]
S(1,R,)

and see whether, in some sense, the cumulative distribution function of
these n variables is close to the uniform. While this is attractive
thecretically, the computations invelved in integrating anything but a
very simple density over m-dimensional spheres are usually not feasible.
We reasoned that for n large, the nearest neighbor distances were

small, cn the average, and hence that we could use the approximation

fg<x> dx ~ g(X)V(Ry)

3
S(Xj,nj)

where
V(r) = Kor

is the volume ¢ an m-dimensional sohere of radius r. In this w3y we were

Ted to testing based on the variaties




An example of a measure of deviation of the wj variables from the uniform

is the statistic
5N YR

where w(j), j=1,...,n, are the ordered wj variables. Notice that

1
S = j (A(x) - x)2dfi(x)
0

where A(x) is the sample d.f. of the W

The invariance principle:

i; This leads us more generally to studying the stochastic process Q(y):
: 0<y<1, and test statistics based on measures of the deviation of H from

the uniform or, more appropriately, on the deviations of ﬁ from its expec-

tation Eﬁ. We had conjectured, based on some simulation studies, that
statistics such as S were asymptotically distribution free under the null
hypothesis. More generally, we had conjectured that the limiting distribu-

tion of v/n(H(t) - t) was a Gaussian process with zero mean and a covariance

not depending on f(x). Our main result, as given in Section 5, is that

this is almost true. What holds is that for the sequence of processes

y Z.(t) = /n(H(t) - EH(t))
' W
Zn — 7
where Z(t), 0 < t <1, is a zero mean Gaussian process whose covariance
depends on the hypothesized density g and true density f, and indeed if
g = f, then the covariance does not depend on f. The proof of this theorem

and other results related to the goodness-of-fit test are given in Section 5.

Defining variables Djn by

_ 1/m
Djn =n Rjn Py
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TET Y
1. tet

then wjn has the form

and, denoting the indicator function by I(-:),

Z,(t) = /n(F(t) -EF(t)) = — JILI(W; <t) -E1(W; < 1)]

5]

= 3=

n
ICn(X;.0;) - EN(Xy,D

for an appropriate h.
This identification suggests that the appropriate tools for the
invariance principle are a central 1imit theorem and moment bounds and

convergence theorems for sums of functions of nearest neighbor distances.

A central limit theorem:

The central limit result established in Sections 3 and 4 is that for
a function h(x,d) on E<m)X[0,m)-—+E(?) such that h is uniformly bounded

and almost everywhere continuous with respect to Lebesgue measure,

1 en 2
Var(/a Z1h(xj,Dj)) — g° <

and

sty B
= E] h (Xj’Dj) N(0,o

2)




! where we make the convention here and through the rest of the paper that
§ for any function h(xj,Dj)

; n*(X,,D,) = h(X.,0.) - En(X,,D,

y h*(X;,05) = h(X,,05) - EA(X{.04)

This is generalized to a multidimensional central 1imit theorem, and used
to give the result that

o
(Zy(t))see 2 (8 )) = (Z(ty) s Z(8))

Qur proof is long. We believe that this is due to the complexity
of the problem. Nearest neighbor distances are not independent. B8ut for
large sample size the nearest neighbor distance to a point in one region

of space is "almost" independent of the nearest neighbor distances in

another region of space. The main idea for capitalizing on this large
scale independence is to cut the space into a finite number of ce]ls. For
¥ any point in a given cell, let its revised nearest neighbor distance be

ﬁ defined using only its neighbors in the same cell. The first step, then,
is to show that asymptotically the revised nearest neighbor distancas can
be substituted for the original nearest neighbor distances. MNow, given
f the number of points in each cell, the set of interpoint distancas within
the Jth cell is independent of those within any other c2l1l., Therefore,
given the total cell populaticns, any sum of functions of the revisad

< nearest neighbor distances is a sum of independent components, with each

such compaonent heing the sum of the functions of the nearest neignhbor

distances within a particular c211.




However, the multinomial fluctuation of the cell population is not

asymptotically negligible. Thus, the limiting distribu%ion breaks into a
sum of two parts, one being the nearly normal sum of the independent cell
components given the expgcted value of the cell populations. The other is
an asymptotically normal contribution due to the fluctuations of the cell
populations from their expectad values. The limiting form of the variance
reflects the nature of the problem. [t has one term that would be the
variance if all nearest neighbor distances were assumed independent. Then
there are 2 number of other, more complex, terms arising from the local

dependence.

A moment bound:

Both the central 1imit theorem and the tightness argument
required for the invariance proof rely on moment bounds. Again,
there is some difficulty in untangling the dependence between nearest

neighbor distances and proving bounds of the type required.

For example, we show in Section 2 that for any measurable func-

tion h on E™0,=) » £(1) witn

(IRl = sup[h(x,d)]| < =

there is a constant M < = depending only, in a specified and useful way,

on h and the dimension m such that

. 4
E<Zh (xj,oj)> <n®
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Both the central 1imit theorem and the moment inequalities (which
improve results in Rogers (1977)) should prove generally useful in methods
employing nearest neighbor distances.

The plan of the presentation is

Section 2: moment bounds

Section 3: an moment convergence

Section 4: central limit theorem

Section 5: invariance and the goodness-of-fit test
Appendix: technical results on nearest neighbor distances

Section 2 on moment bounds is long and somewhat complex. But the
results are needed in the later proofs. The main results of statistical

interest are in Sections 4 and 5.

Assumptions on the densities:

Qur general assumptions on the density f(x) are that it be uniformly
bounded and continuous on its support. These requirements can probably
be weakened, but the price may not be worth the extra generality. The
following conditions are listed to make the requirements formal.

A: We can choose a version of f such that

(i) {f>0} is open
(ii) f is continuous on {f >0}
(iii) f is uniformly bounded.
Corresponding to A we have:
B: The given function g is nonnegative and
(i) {g>0} D{f>0}
(ii) g is continuous on {f >0}.

Clearly essentially all situations of interest are covered by A and B.
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2. Some Useful Moment Inequalities

The central result of this section is the 4th

order moment bound
(2.2) whiéh is used to prove tightness via Corollary 2.5. We believe it
will prove generally useful in the study of procedures based on nearest
neighbors. Its formulation and spirit owe much to the excellent thesis
of W. R. Rogers (1977). Our method of proof is, however, different from
his and suited to the rather delicate estimates we must make.

The proof of the central 1imit theorem requires only the use of the

2nd

order moment bounds given in Lemma 2.11 and its Corollary 2.15. The

proofs of 2.11 and 2.15 are given early in this section and the reader

interested only in the central limit problem may wish to skip the rest of

the section.

The following notation is used:

P is the probability measure making X1""’Xn i.i.d. with common
density f.

E without subscript is expectation under P.

Ri is the nearest neighbor distance to Xi'

J; is the index of the nearest neighbor point to Xi'

_ 1/m
Di =n Ri

I(A) 1is the indicator of an event.

»

F(A) = J' f(y)dy
A
S{x,r) = {y; ly-xll <r}
S; = S(xi,Ri)
For h a measurabie function on E(m) x[0,») — E(l), denote
Ihi = sup [h(x,d)]
x,d
hi = h(xi’Di)
»*
h. =

hi -Ehi




Throughout this section M, with or without a subscript, denotes a

finite generic constant depending only on the dimension m.
Theorem 2.1: If Ihll < =, then
(2.2) e, h)F < mnfina?Eed n | +ntef hg 1FA(s,) +nTie?]

Before giving the proof of the theorem we give two corollaries.

Corollary 2.3: Suppose u and w are bounded functions and

h(x,d) = u(x)w(x,d) .
Then there is a constant C < « depending on Jull, lwl, m such that
n *.4 2.2
(2.4) E(Zi=] hi) < C(n"E tu(X1)| +n) .

Proof: The corollary follows from

Elhy | < IWIE u(X;) ]
Elhy [F2(S;) < IWIECE |u(x) ) |ECF(S;) 1D = IlelElu(x1)|n_(_ﬁg;]—y

where the last equality follows from (1.1).

Corollary 2.5: If

h(x,d) = I{a <g(x)d" <b)
then

(2.6) E(T; h;)* < Min%(6 (b) -G (a))? +n}

where Gn(y), y > 0, is the distribution function.defired by

G (y) = (1 -exp(-

) 17 #0601 - expL-3e (s (x, (/g (x) /™

1
{
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Proof: Let

alx) = F(S(x, (g5hp) /™)

B(x) = F(S(x, Gztzy) /™)

ng(x

Then, for j > 0, defining p, = F(S(x,a)), Pg = F(s(x,3)),

E(1hy FI(5)) Xy =) = ELF(S(xR) T, < F(S(x,R,)) €)X, =x]
Pe .
- J W3 (n-1) (1-u)"%qu
pCt
RLC I
< Mn~J J wo (1 -g&n_zdw
npa
or
. . npp np
(2.7) ECIn [P (5) Xy =x) < myn7 (exp(-—) -exp(-—2) .

If we now apply Theorem 2.1 and use (2.7) for j = 0,1 the lemma follows.

The proof of Theorem 2.1 proceeds by a construction similar to one
used by Rogers and a series of lemmas.

We assume that we are given a measurable set S C R™, F(S) < 1, and
a set of r < n points, x = (X1""’Xr)’ where the x; are fixed points in

X. Let Qr(-

S,x) be the probability measure on (RM" such that L SERRREY SO

are independent identically distributed with their common distribution

s¢) and X

being the conditional distribution F(- = x,, 1=1,...,r.

n-r+l i

s€) as F.. Its density is, of course,

We write F{. 5

£(x)/F(s®) , xes°

fs(x)

=0 otherwise.

We typically write Qr for Qr(ois,x), and EQ to denote the expectation
¥ r

under Qr'
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On a common probability space take X]""’Xn i.i.d. F and Y]""’Yn

i.i.d. F(.

s¢) and independent of the Xi and define,

n ca e
xi = Xi if i=1,...,n-r and Xl.aSC
= Yi if i=1,...,n-r and Xias
i! = Xj_pep 1T TEn-r+l, o0
3 Y Y e L
2 Clearly X],...,Xn have joint distribution Qr. Let Ri Ce the nearest
: ., . v . . Y " ", Ay a, ..
neignbor distance of Xi in the set X1,...,Xn and Di’ Ji’ Si be -defined

similarly.

Lemma 2.8: For n > r, there is a constant MO such that

N - { < linl
[“Qr n(Xy,0q) = Eh(Xy,00)f < Hinflug

(

'.1'1

+ £(5))

Proof: Ffor r > n/2, the bound holds trivially. For n/2 > r,

-<|’. n-l" a A

(n-r) !ZH (2 h(X5,05) - £ n(X, 80T

-1 n-r N
s=r)"0 8 2 Ih(X4,04) - (X, 55!

i=1

‘.‘ ) n=r Y . T LY

$lnerdTINHEL OGN ) s Ty, Ry
1=

e
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Let

the number of “changed”" points among the first n-r. Note “hat EN = {n-r)7(S}.

Now

-/ ;'\‘ _.'\’ - N _ -"v -"‘v

HR3R, X=X) < ZJ_ . 1(J,=4, Ji=koXs2 X, or X #K))
and hence

Y .
(2.10) T OIRAR, K=K < T T 1(5.=3)
i SRR i i = 5 ARRR i
T A T 1(0.k)
K k™ ‘ i

< 2a{m)(N+r)

by corollary S1 of the appendix.

From (2.9) - (2.10) and the boundedness of h,

£ hy-E iyl < [} ((12atm))7(s) = 2an) (£ }}

< lihlia(Te2a(m)) (F(s)+5)

and the lemma {s proved.

Aentedi, PR LR P W
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Lemma 2.11: For lgl, Ihl < «, denote h] = h(X],D]) 95 = g(XZ’DZ)' Then
for n > 4,
-1
lcov(h],gz)! E_M]Hgﬂ(n Elh]l +E[h1F(S1)[) .
Proof: Write
lcov(h,,g,)| < J |h g |dP + f hig dP’ .
But
i on * 4l gil
(2.12) f[J 2] Inysplep <S40 T4 2J = ]|“1| < eIl
1
Moreover,
(2.13) f h:g;dP =J hiCE(g, X)X, ) - Egyldp .
[J1f2] [9,#2] 1
On the set J, # 2, given X; = x;, XJ1 = X5, the {Xj’ 2<3<n, J#dys X J1}

are distributed according to Q2(- ],1x2-x]|L(x],x2)). By Lemma 2.8

* *
h,g,dP

(2.14) lJ[J1f2] 192

* _]—
< Iho (Mqllgl(2n™" +F(S,))dP
[[JﬁfZ] T 1

-1
< aMolg[n™'E[hy | +E[h F(5)1]

and the lemma follows from (2.12)-(2.14).

Proof: From (1.1) it follows that EF

Corollary 2.15: For ihil, gl < =, and for n > 4,

2)1/2

[cov(h1,gz)| §_M2HgH(Eh /n .

2(51) = 2/n(n+1). Now apply the

Schwartz inequality.
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The bounds in Lemma 2.11 and Corollary 2.15 can clearly be made symmetric

in h1 and 9o+ We use them primarily for

Lema 2,16 eovg (hyahy) = cov (hyuhp)] < !!hll2M3(—;; « 7(5)
Proof: Let (X{,%{),...,(Xé,yé) have the same joint distribution as the
vector'{(X],}1),...,(Xn,yn)} and be independent of that vector. Leat
primes on Di’Bi’Ji’ etc. as usual denote calculations based on the

appropriate sample. Then

(2.17) cov (h1,h2) -'Conr(h1’h2) =5 E A
! ' NN

whera

hy = h(X;,D;), N = a8, N o= n(X.,3

The proof proceeds by a series of steps.
Let
A7)
= &7
Ei {hii"i}

1 1*"\“
E; = (hydh,}

Since

ot e
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Lemma A.1 and elementary arguments yield that

' 2
(2.18) max{P(E; N E;), P(E; A €) ¢ all 1,§,k, i} 5M<§2—+ F2(3)>
Since 4 = 0 on [Uiz]{EiUE;}]C, (2.18) and symmetry arguments imply
that
(2.19) |EA| i4!E(h]-'?\i])'(hz-hz)l(E]E;[E1JCEE2]C){
a | )
! + M lh]] 2<%+ F2<S)>
& n

Using lemma A.1 again we bound the first term on the right hand side
\ of (2.19) by,

(2.20)  4|EL(hy-Ky) (hy=hy) (1(3,72,3,42,%,=X,) (LA ) #L(X =Xy, Ry#R) T

2
+ M {[h] 2(% + F2(5)>

n

- , . - . IV %« v v
Let 2 = {i : X;#X5}. Given Z, Xi,1=:,x1,XJ1,X1,XGT, J, and Az-xz the
variables X],...,Xn can be ﬁermuted to have a

Q.(+1S(X;,RUS(X, R ), IX,, 1€ 2, X ,xd1 ,le})
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"4

=Xy ) + T(XY =X“ ) .
1 7

a"
distribution with X, in the lead and r = N+I(x1=x]) + I(X J 5%
Conditioning on this information within the expectation in (2.20) and using
the independence of h2 we can apply lemma 2.8 to the difference between
the conditional expectation of h2 and Eh2 and bound the first term in

(2.20) by

(2.21) 4l nl12 u_(m) E[(I (4,¥K) * 1(Xy= x1,R1#R1)<N+3

4-F(S.| ) + (S 1)]

Estimates of the order —r + FZ(S for all the terms in (2.21) are given
) -

in lTemma A.2. Comb1n1ng (2.19 (2.21) the lemma follows.

Lemma 2.22:

2
. 5(ElR 2

(2.23) |enghohahg| < ¥, 1181 73-' e nfelngF2(sy) + [fn]]% 07

n

. AR
Proof: Let E,, = EJ1,J2&{3,4}], ™ = hyhynahy

Then,
(2.24) j; TdpP = J; 1 2 {COVQ (h]shz)

12 12

2
(EQ hT-Eh1) }dP
r
where
QT‘ 3 OY‘(.§S(X1 ,R1)US(X2’Q2)s{X1 ’XZ’X\.H :Xdzz\and r i 1.
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Apply lemmas 2.8, 2.11 and 2.16 to get,
(2.25) !f T dP| < <M1 R (n']E|h1I + s|h1.=(51)|)> X |f n’{h’z'dpg
E £
12 12
2 * * o -
+ Mz ”hll‘ _[ lh]hzl(n 2 + F2(51) + fz(sz))dp
12
Next
* ¥ * *
(2.26) J 2] wlhs
E12 [4;=3]
v2f hihy

[J2=3,J]${3’4}]

Condition in the first integral on the right in (2.26) by XyaXy d4
1

and apply lemma 2.8 to get the bound

(2.27) 2Ll [ T Fsper

< 4y HOLL (07 Tejn, | + €lnyF(s)) )

by the usual symmetry arqument. Conditian in the second integral by

osky »dy and obtain a bound as in (2.27). Conclude that
2

1

>

[ (E[hwf n' o+ E!h}F(ST)E)

3
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and hence that the first tarm in (2.25) is bounded by
2
£, |
(2.28) M|l 2(—2—‘—+ Ezlh]F(S1)l>
n

On the other nand, applying lemma 2.8 again

* * - l-*l -
(2.29) [inynal(n 2+ Fe(s)) <« tnlt f __inji(n 24 s,

[‘-LI'Z]
* . 2 * , -1
1 R E TR O TR LURCRECIY

[J].Zl
The first term in (2.29) is < M||h]| 2,-3 by the usual symmetry argument.
The second is

< M(E%hy 072+ €ln ] Eln [FE(s))) + [Ialf )
(2.30) < m(2(e% ny (072 + n? €4 n 1FR(Sy)) + nl| ¢ 07
and hence combining (2.28) and (2.30) we get

2
E%[h,]
. 2 1 2
(2 31) {fE "rdplf_MHh” <—2'_+E !'H[F(S'[)
12 n

+ 0% €2y [F2(sq) + Inll 2 n'3>>
Now consider
(2.32) TP = rap+2f T 4o

j&J7=3] IEJT=3,J3¢{2,4}] J[J7=3,J3=2]

S S P ik S — S

k.




By conditioning on Xy,4,,Jy,J4,X; ,X; we can bound the first integqral on
1273913 J1 J

3
the right in (2.32) in exactly the same way as TdP by,
2F:
Efhy | . *
(2.33) M |f] [h] ! n‘ + €l F(S) )| f __hingdp|
EJ1=3,J3512.4}]

+ llhllszpq'h{hy(n‘z + F2(s;) + Fz(s3))dP]

Now use symmetry to bound

| hahy]
[J1=3 ,J3#{2 ,4[]
2l Ihi| -
by o tlhT{
and the second term in (2.33) by,
M[lh|l4
n
Hence,,
czlh
2 (£l 2
(2.34) | mdP| < M|{h{] < + E%1hy [F(Sq)
[0123,58{2,4}] Y S

o+ ) n'3)

. o I~ . . B

Y L T . T v



Next write,

(2.35)

Now

(2.36)

Hence,

(2.37)

P— T Lt e SEas et M 2t Mot et e A M R

22

[ rap = | Cmeps m dp
[3,°3,3572] (9123,0572,0,%4] [9123,042,0,4]

= = = = 1 " = = =1
PlU123,0572,0,%4] = — 21_349[% 3,0472,0,=1]

< (n-3)"1 p[3y=3,052] < (n-3)7 (n-2)7TP(dy=3]

T d < Mllh 4 -3
14J133,J3=2’J2=4]T P’ - ” H n

Next condition on X1,XZ,X3,J1,J2,J3,R1,R2,R3 in the first term of (2.35)

and apply lemma 2.8 to get

(2.38)

3
4 -1
™ dP M_lh|] (n" '+ F(S,))dP

.




. .

2
&&

AV

o Now,

! PLIy=3, J4=2] iMr‘l'2

as in (2.36) and similarly,

' -1

= (2.39) F(S,)dP < (n-2) F{S)

i‘ J‘1Z~J1=3,J3-2] 1 f[J1=3] e

i: - [( (=1 <3

= [(n-2)(n-1)1"" EF(Sy) < Mn

P ;

(2.40) F(S,)dP = (n=2) F(S,) 1(J,=3)dP
- j}d1=3,d3=2] )P = ij3=2] 224,510

" -1

& -2 F(S,)dP

L < (n-2)" a(m) fta3=21 (s,

by corollary Si,

< [(n-2)(n-1)]°1c2(m)fF(SZ)dP < Mn ™3

(2.41) F(S3)dP < [(n=2)(n-1)]"a(m)EF(S;) < #n™3
[4473,d472]

Combining these estimates with (2.38), (2.37) and (2.35) we get,

(2.42) [

"rdPl M [hH n”
LJT=3,J3=2]

S A A e




and nence from (2.32), (2.34) and (2.42),

r2-.' !

(2.43) lf[ Tapl < Miinlf | — = fin sy

J1=3] n-

1 _

s 1ipg12 p73
Next consider,
(2.44) f TP = f TdP - - aP
[J,23,J,8(3,4}] [J,23] [J,2J,=3]
2599 1792
f Tdp
[3523,d;=4]

0f these tarms the first is bounded in {2.43). The next is written,

ij]=J2=3, J3¥4] [J1=J2=3, J3=4]

The second term in (2.45) is bounded by M}!h§§4 n”> as in (2.40). The

first (conditioning on Xy2K05 K, etc.} is bounded by
Mum=4f ("« T 7 R(s,))ep
. il - . ! 7'/

14

and again by Mi|n'iT n”° by arguing as in {2.39) - (2.41). For examole,
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Finally,

|

(2.46) l
Lu2‘3 JX 47

Q.
vl
A
o)
rh\‘\
[ iy
0~
i
w
C_.
pm— §
[
S
| -
-
— %
o
Ny x
>
W A

< [(n=3)(n-2)17" | [n] 12 Efn]

hy
a2 ] 12 (2 ]hg |+ covling |, Iny10)
wn (0|12 (¢

by lemma 2.11. By our discussion and (2.43) - (2.46),

e21h, |

(2.47) U’C map| E !
RSV

<M Ing e | =+ 4
n

Mow by the Schwartz inequality,

o- ¥"- !1'2

A
3“{
...
3
N




i
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The lemma, therefore, follows from (2.31) and (2.47).

Lemma 2.48: For M5 < @

2 .
* * * E h J__% 2

Proof: The argument goes much as for lemma 2.22 and is sketched. If we

»*
denote the integrand by ™

| . _1
dP! < M| |h €h + Elhy 'F(Sy))
lfuﬁmv < M| Hl(n hy | + Elhy IF(S,

*.2 w3 =2
x-/EJ.l*ez,B][hﬂ +* |7 n }

<Ml @

2
lhy | + nE2|hy [F(Sy) + | In] 12 a7,
while
*.2 k * ) * * R ) * *
[ I hghsee] < [In| n¥ns1dp < vn~([nl12 finthslap

f_MHth n'1(E2|h1| + n"llhllz) arquing as in (2.46).

The Temma follows.
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Proof of Theorem: Write

(2.50) (3 hD* < n elhi1* + 6n(n-1) e(n]1(ng0
1

¢ 6n(n-1)(n-2) |EChTI2A0h] + n(n=1)(n-2)(n-3)|Ehynohshy |

We apply lemmas 2.22 and 2.48 to the last two terms of (2.50); note that the

second term is
< 6n®|[n[12 (€3ny] + [cav(Iny],Ing]))

*. 4 !
and apply lemma 2.11, and bound EChy]" by 16]in||".

The thegrem follows.

. . = ” o 2 Ao
P U S I R P e PR o "
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3. Second Moment Convergence

The central result of this section is the evaluation of the limit
of Var(;%:Z? h(XJ-,DJ.))2 for a certain class of functions h. Starting with
n
the density f(x), define

v(x) = £(x)"V/M,

and for any measurable function h on E‘m) x[0,0) —E,, Tet

]9
h(x,r) = h(x,y(x)r) .

Define LO’ L], L2 as functions of bounded variation given by

(3.1) Ly(r) = V(T
-V(Y‘1 )‘V(rz)
(3.2) L1(r1,r2) = e [V(r]) +V(r2) -V(r])V(rz)]
| -V(ry)-v(r,) V(ryry,z)
(3.3) Lz(r],rz) =@ [ (e -1)dz -V(max(r],rz))]

B(r1,r2)
where
B(r],rz) = {z; max(ry,ry) <zl <ryry}
V(rysry,z) = [ dy
S(0,r )nS(z,ry)

For any two functions h, h' define the functional L(h,h') by

(3:8) LIRY) = [Rlxy o DR (gm0 VT Ly ey sy i dx,

+ Jﬁ(x,r )ﬁ'(x,rz)f(x)Lz(dr],dr ydx

1 2

The moment convergence result is




29

Theorem 3.5: If h is measurable on E™ x[0,») — £{1) and satisfies
(i) fhil < =
(ii) the set of discontinuities of h has Lebesgue measure O,
then
%

1 ¢on
Var(;af Z] h(xi’Di)) — g~ (h)

where

(ﬁ(x,r)f(x)Lo(dr)dXJZ + L(h,h) .

(3.6) s2(h) = jﬁz(x,r)f(x>L ]

0(dr)dx - [

As the proof will reveal, the first two terms of (3.6) would be the
1imit if the Rj were independent. The L(h,h) term is contributed by the
local dependence of the nearest neighbor distances.

The proof of the theorem is split into two pieces. Proposition 3.7

below shows that the diagonal terms in
l,on ¥ 2
ntdy P (X5.040)

converge to the first two terms of (3.6). Then proposition 3.20 gives

convergence of the off-diagonal terms to L(h,h). We assume throughout that

the conditions of the theorem hold.
Let X, D be a random m vector and nonnegative random variable

respectively such that X has density f and
P(O>r|X] = expl{-f(X)V(r)} .
Equivalently, D/y(X) is independent of X and

PLO/Y(X) >r] = Lo(r) .

P L
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Proposition 3.7: Let f satisfy A(i)-(iii). Then, as n —,

)

(X):D;,) & (X,D)

where (X1,D1n) is used to stand generically for the common law of any of

the pairs (Xi’Di) and &, denotes convergence in distribution. Therefore

(3.8) En(X;.0;,) — Jﬁ(x,r)f(x)LO(dr)dx

~

(3.9) var n(xy.0y ) — [0 F(Lglar)ax - ([Rtxr)xtylar)an? .

Proof: Almost immediate, since

-f(x)v(r)

P(D1n >r|X1 =x) — e = P(D>r|X=x)

and the set of discontinuities of h has probability zero with respect to

the (X,D) distribution.

Proposition 3.10: For h(x,r) any function satisfying the hypothesis of

theorem 3.5

n Cov(h(X],D1),h(X2,02)) — L{h,h) .

Proof: It is, we assert, sufficient to show for any two functions 31, )

of the form

(3.11) ¢i(x,r) = gi(x)I(r'zri) , i=1,2
with gi(x) uniformly continuous and bounded, that

(3.12) n Cov{(q(Xy501)505(X,5,05)) — L(97,0,) .

To see this note that if ¥ is the sef of all finite linear combinations

of functions of the form (3.11) then we can get a seguence hk €such that




3
Ih, I < 21l

and with respect to L-measure on E(m) x [0,=), he —h a.e. (since h is

a.e. continuous). Now

(3.13)- Cov(h(X],D1),h(X2,02)) - Cov(hk(X],D1),hk(X2,Dz))
= Cov(h(X],D]) -hk(X],D1),h(X2,DZ) +hk(x2’02)) .

Using corollary 2.15 on (3.13) gives the bound
T Cov (X, 4D, ), h(X5D,)) = Cov(h, (X,.0;).hy (X,,0,)) | < cani (€[n-n, |2)1/2
n 1°771727 T2 k712717 kN0 2 - k '

Now the bounded convergence theorem gives E(h-hk)z-—+0, and (3.12)

implies that

Cov(hk(X],D]),hk(Xz,Dz)) — L(hk,hk) .

Since L(hk,hk)-—+L(h,h), the assertion follows.

Proof of (3.12): For i=1,2, let

- -1/m - -
S] = S(x1,n r'l) ’ F1 = F(S]) ’ F]Z = F(S-] 052)
and let
A= {(x],xz); Hx]-xznizn']/m(r]+r2)}
B = {(x],xz); n'1/mmax(r],r2) S LSRN in']/m(r]+r2)}
C= {(xl,xz), 1xq=x,1 in']/mmax(r1,r2)} .
Then
n-2
[ (1-Fy-F,) v (x1:%,) €A
-1/m -V/m, oy o - =4 (1.F . n-2
P(R1 >n rys Rz.i” r'z.X1 x],X2 xz) 1 (1 F F2+F]2) , (x1,x2) € 8B
0 » (x95%,) €C

. : e— P iy PN . .
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and

Then, denoting :
A L
=D m m v - - n-1
L(x1,x2,r],r2) = -(R]Zﬂ r],Rzgp rzlx]-x1,x2-x2) - [(1-F1)(1-F2)]

and 91(X1) by gi, f(xa) by fi’

COV(¢1,¢2) =‘[g](x1)gz(x2)L(x1,xz,r],rz)f(x1)f(x2)dx]dx2

)n-1]f R

-2 -
*[a9,L0-57)"2 - (1™ 0 172

2

yN-21¢ ¢

172

n-2
*1;9192[(1'F1'F2*F12) - (1-Fy-F,

- n-2 -4
'fc9192[(“‘:1"2) 5,

Bacause nf, < T/(r,), where ¥ is the supremum of f, and nFy —f(x;)V(rs), for

fixed x;, x
O AR (NS Ll SR Lt

£z n-2
n(1-F,)""2(1-F,) "2 {1 - _F: 21_F2 - (1-F])(1-F2)J
‘f(x1)v(7‘])":(x2)v(r2) . . \
e [FCa Y ) (1)U rg) =F(xq ) F () U (7 V()]

PN G P G S a - N Y . N N ]

E
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Furthermore, the convergence is bounded. Therefore

V] ¥
n I] - ¢(x1,r1)¢(x2,r2)L](dr1,drz)f(x1)f(x2)dx1dx2

as can be seen by making the transformations v(ri) = f(xi)V(ri)'

In 12,13 make the transformation

leading to
B = {(x7,2); max (ry,ry) < flzll < vy *+ 1yl
C = {{xy,2); l|z]] < max (r1,r2)}
On BUC, for Xy fixed
Fxy)a5(xy) = Fx1)95(x;)
uniformly, and
n Fi - f(x1)v(ri)
n F‘]z hd f(X])V(r],Y‘Z,Z)
where

(ryirge2) = ey

Iyl < rlly-zll <,




Mhbrtace Sis Jans
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g ) Therefore
(o] F(x)V(ry,r,,2) F() V(e (r,)]
. nl, — ([r (e 17277 1)dzle e 91(x)92(x)f2(x)dx :
_ il
L
{ A simpler argument gives
E ’ -f(x)[V(r‘] )+V(Y‘2)] 2
’ nI3 — V(max(r],rz))e g](x)gz(x)f (x)dx .
1
[ In both integrals, make the substitution V(r%) = f(x)V(ri) and add the

1imits together to get the proposition.

e aAa m m o a e s l_mla_oasa
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4, A Central Limit Theorem

The main result of this section is

Theorem 4.1: Suppose the set of discontinuities of h has Lebesgue measure
0 in E(m) x [0,») and

sup [h| = Ihll <= .,
X,d

Then if the density of the distribution satisfies A(i)-(iii),
*
(4.2) L3 n(x..0,) £ 80,65 (h))
/n J°J
where o2(h) is given in Theorem 3.5.
The proof proceeds in a series of propositions.

Notational convention:

Lower case c denotes a constant depending only on m and (hfi. The
dependence- of other constants on various auxiliary parameters introduced

below will be noted as needed.

Proposition 4.3: There exists a sequence of bounded sets C, C E(m) with

N

Cy &C such that

N N+1

1) diameter(CN) <N

2) inf f{x) =6

N> 0

3) P(xecﬁ) -0

Proof: There exist compact sets A, C AN+1 such that J f dx — 1. Chuose

N
Ay

5N > 0 such that GNJ dx — 0. Let
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and take CN = ANfWFN. Then
J f - ( f< J cfs GNJ dx
AN CN ANﬂFN AN
S0 I f — 1.
Cy
In preparation for the next step, let DN be a cube of side N such
.. . _ m -
that CN c DN. Divide DN into L = (k) congruent subcubes DN,l’ 2=1,...,L,
and let
B2 = DN,Q N CN , £=1, ,L
B=U3(B)
s L

where 3 denotes boundary. The Bl, ¢=1,...,L provide the basic cells such

that nearest neighbor links between different cells will be cut. From now

on until the end of the string of propositions N and the BZ’ 2=1,...,L

will be fixed.

Select dN > 0 and let

Ey = {x; x&C d(x,8) >dy}

N? N

where d(x,B) is the distance from x to the set B. Write (X,D) for (X1’D1n)'

Note that by using f(x) < sup f(x) = f, we get

< ond L1/NTE
Now let

h(x,d) = MxEENM(xm).

We suppress dependence on N, L here and in the sequel except where
* *
emphasis is needed. Denote (recalling that h = h-Eh, h = h-Eh),

7 h X, 0.
ENCI R

1 J

1
7 = —
" m

- -~ P - . - S Y
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Z(NL) = — 21 h (x D,

1/2.

Proposition 4.4: E(Zn -Zn(N,L))2 g_c(P(XEEEﬁ))
Proof: This follows directly from corollary 2.15.

For the next step, define

. - { 0 if Xj € By, no other X, € By
J inf IX.-X.l if X. € B
inf IX:-X, , .
iAgg )
XiEBQ
. _ Vo 1/m '
and redefine h(x,0) = 0. Let Dj = R and

. 1 en * .
Z)(N,L) /EZ] h™(X;,03)

2 -(n-])eNV(dN)
Proposition 4.5: E(Zn(N,L) -ZH(N,L)) < cne where g, > 0
depends only on N.
Proof: E(Z (N,L) -0 (L)% < L E(T. a0)?
—_— n‘’ n'’ -n Zj J
2
<1y B
where
a5 = N(X5,05) = h(X5,0%) = E(h(X;,05) -h(X4,03))
S0

£(2,(N,L) - ZA(N,L)? < T4 ECh(X;,04) - h(X;,03))%

. € . impli t= R..
Now XJ Ey and d(XJ B) > RJ implies RJ RJ So

| 2 2 .
E(Z (N,L) -2 (N,L))" < 2Ihl Zj P(RJ.#RJ., xjeEN)

< 21n1%nP(d(X,B) <R, X€E

N
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where (X,R) stands for (X],R]n) by our usual convention. Now

P(R>rlXx=x) = [1- F(S(x,r))]n'1

Note that d(X,B) < Wm for X € €. Now

inf  dinf_ [F(S(x,r))/V(r)] = ey ” 0
xCy O<r<y/mN

since M(r,x) = F(S(x,r))/V(r) is jointly continuous on [0,/m N] XCN, where
EN is the closure of Cy, and since M(r,x) > 0 everywhere in CN x [0,/m N]J.
Therefore

'(n'])ENV(d(X9§))

P(R>d(X,B), XE€E fF(x)dx .

) <J e
N —_
XEEy,

For x € Ey, d(x,B) > dys SO

-{n-1)e, V(d

N N)

P(R>d(X,B), XEE) < e
and the proposition follows.

For the next step, put B0 = Cr, and denote

C
N,
P(xer )=pQ, 2=0,1,...,L

so I+

lg=1 Pg * 1. (Assume that for every 2, p, > 0, otherwise delete B,-)

Let
ng = #(XJ. €8,)

so the (no,...,nL) have a multinomial distribution with parameters
(po,...,pL). Consider the following construction: draw num. Nyse sl

In, = n from a multinomial distribution with parameters (Pys---2p ). Then

put Ny points Xgl), i=1,...,n into 87 using the distribution

2

Fl(dx) = P(Xde:XEB.;J) .
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(2) .. (2)
1 'Y 1—],llu’n2’ 1et R_i be the

from the other points in Bz’ and

Denote by P the joint distribution of X
(2)

nearest neighbor distance to Xi

Dgl) = n]/mRsz). Put

L (2) pH(2)
Lizp M7 0770, ny >
T, -
0 s Ny <1

Then

L . on '
Toy Ty = Dy 00X03)

—

Proposition 4.6: There are constants Yo 20 L=1,...,L such that Yn

32

and 2
E(E(Tzfnz) -ET, '("z'E”z>Yn,z) <CR) <=
where C(2) is independent of n.

Proof: Oefine

wz(rlx,ni) = Pl(n]/ngl) >r|X1(2> =x)
- (M
Note that
£(T,In) = ny [ Gxar e (drx,n, )F (%)
Define
Xp(r1x) =W, (rix,np,)

np. -1
[1 -, (St ™ /™)1

and suppressing the dependence on L, let

uy = (n,-np,)/(np,-1)

Then

Hpt]
W r{x,ni) = 4n

2!
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. Then

. n2-1 un

;’ wl(dr|x1n£) = BT X Xn(dr1X)

g .

; . = (un+] )Xn d Xn

L

where d Xq = xn(drlx). This is zero for My = -1, so we eliminate this set
in the expectations to follow. Writing N = (np1—1)u2-+np£ leads to the

expression
(4.7)  E(T,|n,) = np, (1+u )2 hund dP. - u (1+u) hU“d dp
: L2 pz un -Xn Xn 2 Mn Hn MXn Hn 2

The expectation of the square of the second term in (4.7) above is bounded

by Ciﬂbﬂz/n, and is henceforth ignored.

Next, expand
u u2 fu

n 2
Xy = 1+ u logx, + {log x ), "

2

where 0 < 8 <1, and substitute into the first term of (4.7). We assert
that all terms contzining a power of Y, higher than one have squares whose

éxpectations are uniformly bounded in n. For example

(np, ) PE(5 Jh(log X )ox, sz)Z < (np,)2InIEnt < CHh]H2(1-p2)2
and
(9% 12 (14u) ¥ (109 xn)zxiu"dxnd%]2
< 1n1%(np,) e [u2(140,)% (10g ;(n)zxiundxndpg)z
< 2ini3(np )2l (1u )75 -1 <y <0} + ECut (T+u)s uy > 03]
<c i’
Therefore

(4.8) (T, In,) = np, jh(1+un(2 +1og x))dy, P, + 0,(1)

- T e e e m e v = - . - A ) a .




SO

(4.9) (T, In) - €T, = npu JP_\(Z +10g x,)dx, 4P, + 0,(1)

where 02(1) in (4.8) and (4.9) denote quantities such that

sgp E(02(1))2 < », Letting the Yo, Of the proposition be defined by

np,

n,2 T p,-T JQ(Z +10g x,)dx, dPy

The proof will be completed by showing that the integral on the right above

converges. For x fixed, ¥ (r|{x) is a non-increasing function of r such
“n

that for x € Int(Bl)
Xn(r'x) — e-f(x)V(r) = xo(rlx) .

Since Q(x,r) is a.s. continuous with respect to dxo dPl, then

f
Jb andPg — Jb dedPQ .

Now let
Xp(rlx) = (1 -Tog x, (r[x))x,(r|x)

so that

Xpldrix) = -(log x,(r{x))x,(dr|x) .
For x € Int(8,)

Xp(rlx) — (1 +F()v(r))e TIVIN) o Xo(rlx)

and so
(4.10) Jb(]og Xy )dx, 4P, — -fbdxo dp,
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s S I A In ). £, 2
Proposition 4.11: = Zl=][E(T2,n2) E(Tl)] N(O’ON,L)
where
2 2
(R (T10,)° -
-1 L 2 2
Moreover, n” 'E(}, 1 [E(T,[n,)-E(T,)]" — oL

Proof: Clear from the preceding proposition.

[t is useful to recall the dependence of parameters on N and L at this

point.

Proposition 4.12: Let

15t
(4.13) Uy = — 15 (T, -E(T,Iny))

Then there is a constant ss L < « syuch that

2 a.s. 2
E(Un|n1,...,nL) —ET—* SN,L .
Proof: Given n = n1,...,nL, the terms in the sum for Un are independent.

Thus

2 _ 1
E(Un[n],...,nL) = ﬁ-%Var(Tl!nl) ,
and

Var(T,n,) = n,Var(h(x{8) 0{*))|n )

. nl(nl-l)Cov(Q(ng),Dgl)),h(Xéz),Dél))lnl)

it is then sufficient to show that

) 2-S:, constant
2 L]

, 3t§4» constant .
N 1
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This result can be gotten through a simple modification of propositions 3.7
and 3.10.

Now we are ready for the final steps. We can write
. o
(4.14) Z(NL) = U + v,

with Un defined in (4.13) and

Vo= %n L TE(T,Iny) -ET,T .

By‘é'we mean equality in distribution when Un and Vn have the joint distribu-

tion we have implicitly given them. Denote ey = P(X€ES).

Proposition 4.15: If 02 = 1imn Var(Zn), then

102 '(Sﬁ,L+Oﬁ,L)] < cey + ZO/EEN .

Proof: By propositions 4.4 and 4.5

e ' 2
(4.16) 1;m E(Zn -Zn(N,L)) < cey -

Use the inequality

2
n

2
-EZn

(4.17) €z (N,L)| < €2, -2 (N,L) % + /BT VPR 200

and take n—« to get the result.

‘) -
Proposition 4.18: Let a = /max Py and take |t|” <= ]. Note that x depends
.

on both N and L. Let gn(t;N,L) denote the characteristic function of ZA(N,L).

Then 2
N

im (t;N,L) -e
in [g,




g, (tsN,L)

Given n, U,

distribution of T, -E(Tzlnz) given n Hence

x

itUn
E(e In) = Hfz(t) , fz(t) = Ele

Applying corollary 2.3 to Az’

E(Ailnl),i cylny,/n) s E(|A2||"g) < ¢y(n,/n

where Cy will denote constants depending only on m, lhlil, and ek will be

quantities such that Iekl.i 1. Then

2

1-f,(0)] < SEMSIn,) < (cyr2)t?

2
[£(8) =1 +ELIn)| < cpltltny/m)

Temporarily restrict t to the range |t|a g_c{]/z/Q-

B = {max(nl/n)iz maxpl} .

n 2 2

On B, Al -fg(t)l < 1/4, hence

log f,(t) = Togll1 - (1 -f,(t))]

£2 3,

SRR n,) + 8yc,t (n /)8

So
Inf

where, since It3|a <1

(”z/")

Define

+ :2C3t

..,nL) .

)3/2

4

3/2 .

(”;/”)

= Z% Az’ with the A2 independent and having the conditional

2




45

)3/2

}Anl §.c2[t3| %(nz/n + c3t4 Z(nl/n)2

3 4, 2 3
2 eltTfareg |ttt < cplt]7a .
Therefore

A
e 1] < cgltl%

and so, denoting a2 = £(U%|n)
-Bﬁtz/z 3
|TF () -e | < eglt] ™
holds on B for all t such that |t3|‘5 a-], and |t]a < c{]/z/z. Write
it(U +V ) it(U +V )
go(tsNsL) = E(I(B)e " V) +E(I(Be " ) .

Since P(Bﬁ)-—+0, the second term goes to zero, so

L ity -82t%/2 5
Tim )gn(t;N,L) - Ee | < c5]t la .

Combining this with propositions 4.11 and 4.12

2 2
— -(sy (toy  )t7/2
T (g, (tsM,L) -e o0 R <o

To complete the proof we need only remove the restriction {t]a < c-1/2/2.
=

But this can clearly be done by increasing the constant Cg-

The stage is now set for the proof of Theorem 4.1. By (4.16)

1imn lgn(t)-gn(t;N,L)[ < limn E!exp{it(Zn-Za(N,L)} -1 5_|tl/ceN ,

where gn(t) is the characteristic function of Zn. So, by proposition 4.18,

— N 3
(4.19) Tim |g (t) 'exp{'(sN,L+CN,L)7T}| <c(lt] 2 +}t!/€§)
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for |t|33 < 1. Now let N—w, L —= in such a way that a —0 and ey —0.

By proposition 4.15, if e, —0, uniformly in L,

N

. 2 2 _ 2
11mN (sN L*ON L) = g° .

] b

Since the restriction !t|3a < 1 is satisfied eventually for any fixed t,
as a —0 we conclude that, for all t,

2.2
: _ .m0t /2
Tim gn(t) = e
and (4.1) follows since the equality of 02 and oz(h) is derived from the
moment convergence theorem 3.5.

By considering linear combinations of h's it is clear how the results

can be generalized to provide a multidimensional central limit theorem, and

the moment convergence theorem 3.5 can be easily modified to give the

1imiting form of the covariance matrix.




5. The Process H(*t) and Goodness-of-Fit

First, a Glivenko-Cantelli type theorem is established for H(t).
Let

(5.1) A(x) =

—
8
«
P}
>
e
[
o

and define a d.f. H by,

e M) g <t o
(5.2) H(t) =
1 y» 2 1 ’
and
(5.3) @ = H(1) - K(1=) = PLg(x,) = 0]

Note that if f=g, then 220 and H is the d.f. of the uniform distribution .

Theorem 5.4: If A(iii) holds, as m,

(5.5) sup | H(y) - Hy)l %50 .

Y

Proof: We begin by showing,

-~

(5.6) H(y} - H(y) a.s. ¥ 0 <y <1

(5.7) H(1-) = 1-a = H(1-), a.s.

47
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To prove (5.6) note that by corollary 2.3,

PLIH(y) - EH(y)| > €] = a(n"?)

and hence by the 8orel-Cantelli lemma,

(5.8) Q(y) - Eg(y) -0 a.s. ¥0<y<1
Assertion (5.6) then follows by using (3.7) to show that
Eg(y) - H(y). Next (5.7) is an immediate consequence of the S.L.L.N

To complete the proof of the theorem, let

:—LXL y 0<y<ld
Ak H(1‘)
(5.9) H (y) =
! y ¥ 21

and define H* similarly in relation to H. By (5.6) and (5.7) o converges in
law to H* with probability 1. B8ut H* is continuous and hence by Polya's

theorem,
(5.10) sup 14 (y) - K (y)] %30

ana (5.5) follows from (5.10) and (5.7).

e gt an S i B g
. . .
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De¥ire 2 stochastic srocess on 0

/ n N
(5.11) Z,(t) = ¥ (H(:) - EH(t)), 0<t<l ,
and 3 corresponding Gaussian process I with mean I whose zavariance Sunction

-

v(s,3), 5 < %, is defined by
v(s,t) =[s(f) - (?cg sj.:\s’*ff.:"‘f + Tog tfxc"‘r‘fs‘.-‘

+ log s log tftkfjsxf) + log sfk(st)xf + A(st)h?f07k(s,t,w)-])dwdx
B!

(5.12)

.t)

w

where
3(s,t) = {w: rpcdul <y - ,.2}
log T{s,%,w) = fdz .
S(u,r,l) N S(w,r‘z)
where

<2
—
3
—
~—
1]
’
—_
o
(o]
w

V(rz) = -Tog t




50

B(s,t)

Clearly the processes Zn(v) can be identified with probabilicy
measures on 0{0,1] and it will follow as a consequencs of oQur proof *hat
Z(+) can be as well. 1In fact, if o =0, Z2{-) has a.s. continuous samgis

functions. Qur main result is,
Theorem 5.14: Suppose that 4 and 8 hold. Then,

Z -1

in the sense of weak convergence in D[0,1] where Z is as above and has za.s.

continuous sample Functions.

Before giving the orcof we state and srove the corollary of gJreatest

Let
1 A -~ 2
S, = n f (R(t) - a(e))? at
v 9
1. A s no,o. .
5. =1 f (A(t) - ereny?aie = ¥ HEhiag - s
0 J=1 -

serollary 5.15: 17 7=g and A nolds, 2040 S, and 3, zend “» lzw o
: 0 .

i
J[ Zzit) dt wners I nas covariance Tunczion (5,13,
0




— Ivv"'
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The corollary is, for'So, an immediate consequenca of Theorem 5.2. 8y

writing

we see that the corollary follows in this case from Theorems 5.1 and 5.2.

Notes: 1) The theorem can be extended to the case a > 0 by a conditioning
arqument as in Section 2. Of course the Z process is then continuous only
on [0,1) and has a jump at 1.

2) It is not possible in Theorem 5.1 to replace Eﬁ in the defini-
tjgn of any H. Although Eﬁ(t) + H(t), the difference is of the order of

n M and will not be negligible for m > 3.

Proof of Theorem 5.14: We begin by establishing the tightness of the Zn

sequence using the 4th moment bound proven in Section 2. Let R],...,Rn be

as in Section 2 and recall that

]
m .
Di n Ri’ i=l,...,n

Lemma 5.16: If A(iii) and B hold, the sequence of processes (Zn} is tight in

0{0,1] and any weak limit point is in C[0,1].

P S e - |
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Proof: We use a device due to Shorack (1973).

Note that:

)
s T i, -log t -1 t
Z,(t) =n 21=1 I<9(X1-)D’§ < —ﬁ—) - F’(q(x.;)o';1 < —%9—>

wnere K“ is the volume of the unit sphere in ™. Let

n Km

Q(t) =6 <iQ.9_t>

where Gn is given in corollary 2.5. Notas that by B and the dominated

convergence theorem Gn is continuous. For given § > 0, let <<t be

K
such that,
Qn(ti)=%, 1<ic<K

K oy 8
where WiT <(K'1)V-‘ﬁ"
Let

() = 2 (8) * (0 (£)-0, (8,002, (1) -2n(2,))

for t, <t < ti+1 y 0 <i<K, to = 0, tK+T = ]
Nota that

* s*

Zn(O) = Zn(1) =0

An elementary application of corollary 2.5 shows that,

(5.17) Hz0(e) - (st M (8)-0 (s))2, all s, +
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where M depends on 3§ but is independent of n. Since, under A(iii) and 8,

dominatad convergence wmplies that for each y,

a continuous probability distribution; it follows from a slight modification
of 3iilingsley ({1968, Theorems 12.3 and 12.4) that {Z;} is tight and that
all limit poincs of {2 } are in C[0,1].

Next note that '

(5.18) sup,1Z (t)-2 (2)] < max[sup{|Z,(£)-Z,(t;)]: t; <t <ty )

n'-1 1

+-1§i (sup{|Q(£)-Q (t)]: &y <t <t DIZ (t,)-2 (t )] 0 <i < K}

< max { (12080502 (81 + VAER (5,008, ()]

P (e )T (E)] 0 < ¢ x}

-~

using the monotonicity oan(-), EHn(-), Qn(')

Next note that intagrating (2.8) for j=0, implies that for C independent ¢f n, 3,

VA E(R ()R, () € € ¥A(Q,(t;,1)-0 () £ €3

Hence,

* - . v . Aa
(5.19) supt;Zn(t)-Z;(t){<i 2 max{{Zn(ti+1)-Zn(ti)[ :0< i K+ T3

But in view of {5.17), some alamentary inequaiities give
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(5.20) P[max{!Z;(ti+1)-Z;(t1)!: 0<i<K}>e]
-4, K 2 S
e M Z1=0(Qn(t1+])-0n(t1)) < M/"_‘_'n — 0
By (5.18)-(5.20) for each & > 0, C independent of $
(5.21) P[suptlZn(t)-Z;(t)l >2C8] — 0 .

Since {Z;} is tight for each §, (5.21) implies tightness of {Zn} and a.s.

continuity of all 1imit points. (See, for example, Theorem 4.2 of

Billingsley (1968). Note that the dependence of Z; on 5 is immaterial.)
Asymptotic normality of (Zn(t1)"“’zn(tn)) follows from the represen-

tation given in the introduction,

- 1 n *
Zo(t) = = Ijaq M70%4.04)
with

h(x,d) = I{exp{-a(x)V(d)}<t)

and the multivariate extension of theorem 4.1. Similarly the formulae
(5.11) and (5.12) for v(s,t) may be obtained after tedious calculations

from the appropriate straightforward generalizations of proposition 3.10.
As an immediate consequence of theorem 5.4 and corollary 5.15 we have

Theorem 5.22: The tests which reject when S1 > c(a) where

1
p {J 22(t)dt sc(a)} = 2.
9 Jp -

asymptotically have level « for H: f =g and are consistant acainst all f # g

which satisfy A and B.
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Proof: That the tests have level a is immediate from corollary 5.15. We
check consistency for SO.
Note first that if f # g
! 2
(5.23) J (H(t) - t)%t >~ .
0
If not, since H(e™®) is the Laplace transform of k(X]) and equals e’s a.e.,

then Pf[A(X]) =1] = 1, implying f = g a.e. Write

1

s = [ 2(t)at + 27 7 A(t)-€ f A(t)-E A(t))?
0" . t)dt ynJ n(t)(EfH(t)-EgH(t))dt + nj (EfH(t)-EgH(t)) dt .

Jo 0 0
Then
12
Jozn(t)dt = 0,(1)
/Rj1zn<t)<efﬁ(t) -Egﬁ(t)>dt = 0,(/n)

9

by (5.23). Therefore,

and consistency follows.

Note: In his thesis M. Schilling (1979) has made a far reaching investigation
of the power of this and related tests against contiguous alternatives, has
constructed tables of the asymptotic null distribution of S0 for m = 1 and

w and has studied the efficiency of the large m and n approximation through

simulation.
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APPENDIX

In this appendix we give the statements and proofs of several Jemmas
of a technical or computational nature which are used in the previous

sections. We begin with a key lemma due to Stone (1977).

Lemma S: For each m and norm | there exists a(m) < = such that it is
possible to write R™ as the union of a(m) disjoint cones C1,...,Ca with 0

as their ccmmon peak such that if

e o et Lo gue o i ocman a4
. v"l.-"‘ L
ey . .

X, ¥ € Cj,x,y#O, then |Ix-y{| < max( ||x|| , |l¥ll }» i=1,...,a(m)

The following straightforward modification of Stone's argument shows

that the lemma is valid for any norm.

O Proof: B3y compactness of the surface of the unit sphere 3S(0,1) we can

- N ﬂ‘ ) . .
find C]""’Ca(m) disjoint sets such that,

(0 W3 T = s

;o v
° (1) %, y e G = [{x-y[] <1
Let

")
Cj = (AX : Xxe Cj’ A > 0}, j=1,...,a(m)
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"

") A, A,
Suppose X = Ax, ¥ =7, %, Y e Cj. Suppose w.2.0.9. A < 7. Then,

Ay ANy Ay '<
RIS SRS R IR ST

The following are easy corollaries of Temma S.

Corollary S1: For any set of n distinct points, X1seneaX in Rm, Xy can be

n
the nearest neighbor of at most «(m) points.

Corollary S2: If C1""’Ca(m) are as in lemma S, Yo is arbitrary, x € Cj+y0,

then
S(x:x=yo) 2 S{yg,Ix-y,l) ﬂ(CJ.+yO) )

The following consequence of S2 is needed for the proof of lemma A2 but

is of independent interest.

Theorem Al: Let Y be a random m vector with distribution G, density g, and let

Y, De a fixed point,
Q = &(S(Y, | [Y-y, ! 1))
Then,
(A.2) PQ<al ca(mq, 02q<]

Proof: First let Yo *© 0 and let Gj be the conditional
distribution of Y]Ye:cj and Pj = G(Cj), where the Cj are given by corollary
S2. Then,

(A.3) P(Q <ql = zj{pj PlOcalYeClep, > 0}
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A-3

But Y € Cj implies by corollary S2 that
G(S(Y,uvn)) > ijj(S(O,HYH) an) .
Hence, for pj > 0.

(A.4) Pla<qlY&C,] < PL6;(5(0,1V1)) <a/pyiYEC,] = 5‘;—

since, given Y € Cj’ Gj(S(O,HYH)) has a uniform distribution on (0,1). (A.2)
and (A.3) imply (A.1) if Yo = 0. For the general case shift everything by Yo

and apply corollary S2 in full generality.
Corollary A5: If Q is as in theorem A.1, r > 0
£(1-0)"Q < M(r+1)7?

where M depends only on m.

Proof: Since 0 < Q <1 we may w.1.0.g. take r > 2. By integration by parts

1
£(1-)" joptoiqli-n-qf+rq(1-q)r“dq}

1
< a(m)rJ0q2(1-q)r']dq

IS
~
—~
-~
]
]
~
(% ]
194
—_
3
—_
b3
—
—
]
x
ar
~
(o}
=

< M(P+1)-2

We proceed to lemmas A6 and Al0.
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? Lemma A6: Let
,
8 s DXy F X
Fig * [X1 = A Ry = ’\1]
F13-EJ1' '-'20?'J1=2]
Then
(A.7) P(F,] 5_;»1(% + s:(s)> . Y
2
(A.8) PLFY 50 Frpd < i <:_2 . Fz(s))' dite

Progf: All these estimates follow by symmetry arguments as in the praoof
of lemma 2.27. We prove one of the estimates of (A.8) as an example.

Note that we may without lcss of generality take r < a/d (say). Then

n-r

- n-r
(.9) PLF1, MFyg] < Llner) (e ITTEL T 1(Fy) ] (1004 =K) 103, =)
k#i

.i—

< Ba(m)n'zE(N+r)

by corollary S1. But

7

n

"~

~

Ciearly the bounds (A.7) and {A.8) are overastimates in this cass, We

- nave written the 'emma in this wav For compactness.

el e SN TP W el ol a




A=S

Lamma A10: With the same derinitions for j = 1,2,

(a.1) EI“U)%iMG;+¥“0

(A.12) £ L(Fy ) F(S;) im<l‘;+ FZ(S)>
‘ n
%‘ (A.13) £ L(Fy ;) F(S)) _<_M<'”72+ F2<5)>
F n

Proof: a) § =1

£ I(Fy) %= F(S) (1 + (1 - %) F(S))

Let

Then,

Ny

E T(F,)F(S)) < € T(F,DE(S(R ,R]))

< (n=r)"" E(S)(1-F(S)) + F(S)

The bounds (A.11 -A.13) are immediate for r < n/4 and trivial (for large

enough M) for r > n/4.

. aleio el ——a : - s fa s . PRSI O P




e e —

| ."]: . "‘..

—

T
o

= (‘ - r‘nl> PR N Fppl < 2a(m) g‘l\({%‘\%%

- e

m™m
—
~~
=
—

nN

S
3=

< (57 + 09)

L for r < n/4 and (A.11) follows.
' To prove (A.12) begin by writing,

(A.14) E (R ) F(Sy) < E 10Xy = K.Ry < Ry)F(Sy)

n, r A, .
+E Ty = XpaRyg > R JF(S)) + 2 B T(XG = KRy > Ti%g = x5 HDIF(S)

=1

where,

. n N A

A
=2

]
-
(]

#,1<3¢

. . a, v . . .
R1C=m1n{HXJ.-X1H :Xjij,J'%],liJf_n-r}
Then, we bound

. " ¥ X %X =0z
(A.15) E I(X) = X{uRy < RF(Sy) <€ r(xJ] X XJ1)F(S1) = "' F(S)

sttt ituings sshautesuinauteny enttnfesndennhsiiushntmintintationtonntttng.. Ao



Next,

w
(A.16) £ I(X1 = X],R1o > RTC)F(SX)

n \ " N N v
< E{p[FS(S(Xl’RIO)) > FS(S(X1,R1C)){N,X1,R]C,X1=X1]FS(S(X1,R]C))I(X1=X1):

Y]

= ELO-Fg (SR ISR (S(R Ry )T =K,

where K = n-r-\N

1
o <€ Nf (1-w)"""% dw = [(n-r}(n-r-1)]"TEN

o

r
<M 'y F(S)
for r < n/4.

\ N
The next to last inequality follows since, given Xy = X1 and N, FS(X1,R ) is

1e

distributed as the minimum of N uniform (0,1) variables. Finally, arquing

as above,

. N
® (A.17) B T = XuRyg > Xy = x5 DF(Sy)

") ~, K- ", A, )
< E(]-FS(S(X1,IIX1-XJ{|)) ]FS(S(X]"}X1‘in})I(X]’X]) !




T Ty
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Y]

v N
Given X1 = X1, we can apply corollary A.1 noting that FS(S(X1,[§X1-xj§§))

nas the distribution of Q with G = FS’ xj T Yye Since conditionaily K-l

has a binomial (n-r-1, 1-F(S)) distribution, we obtain as a bound for (A.17),

(A.18) ME(K2[ky=X) < 3 M(1-F(5)) ¥ (n-r) 72
Therefore, we obtain
r n, r2
(A.19) Jz,1EI(X1=X1’R1O > [1Xp=x5 1 IF(sy) < M n_2+ F(S)
for r< % , F(S) < % (say).

Combining (A.15), (A.16) and (A.17) we obtain (A.12) for j =2, since the
restrictions on r and F can be absorbed into M for the final bound.

Finally,
v N
(A.20) E I(Fm)S1 <E I(X1=X1,R] < R1)F(S1) + £ I(X1=X

The first term in (A.20) has been bounded in (A.14) and (A.19). The

second is bounded as in (A.15) by

» F(S) <

[ Rl

[4y=X,) < M F(S)

3}

r < n/4. (A.13) follows for j=2 and the lemma is proved.

_— e e e tmta m o a e Lo aal e a
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